别再纠结于文字描述了,观看视频,让金属材料高温合金信誉至上产品为你展现真实魅力!
以下是:山西忻州金属材料高温合金信誉至上的图文介绍
1、铸造冶金工艺
目前各种先进铸件制造技术和加工设备在不断开发和完善,如热控凝固、细晶工艺、激光成形修复技术、耐磨铸件铸造技术等,原有技术水平不断提高完善从而提高各种高温合金铸件产品的质量一致性和可靠性。
不含或少含铝、钛的高温合金,一般采用电弧炉或非真空感应炉冶炼。含铝、钛高的高温合金如在大气中熔炼时,元素烧损不易控制,气体和夹杂物进入较多,所以应采用真空冶炼。为了进一步降低夹杂物的含量,改善夹杂物的分布状态和铸锭的结晶组织,可采用冶炼和二次重熔相结合的双联工艺。冶炼的主要手段有电弧炉、真空感应炉和非真空感应炉;重熔的主要手段有真空自耗炉和电渣炉。
固溶强化型合金和含铝、钛低(铝和钛的总量约小于4.5%)的合金锭可采用锻造开坯;含铝、钛高的合金一般要采用挤压或轧制开坯,然后热轧成材,有些产品需进一步冷轧或冷拔。直径较大的合金锭或饼材需用水压机或快锻液压机锻造。
2、结晶冶金工艺
为了减少或铸造合金中垂直于应力轴的晶界和减少或疏松,近年来又发展出定向结晶工艺。这种工艺是在合金凝固过程中使晶粒沿一个结晶方向生长,以得到无横向晶界的平行柱状晶。实现定向结晶的首要工艺条件是在液相线和固相线之间建立并保持足够大的轴向温度梯度和良好的轴向散热条件。此外,为了全部晶界,还需研究单晶叶片的制造工艺。
3、粉末冶金工艺
粉末冶金工艺,主要用以生产沉淀强化型和氧化物弥散强化型高温合金。这种工艺可使一般不能变形的铸造高温合金获得可塑性甚至超塑性。
4、强度提高工艺
⑴固溶强化
加入与基体金属原子尺寸不同的元素(铬、钨、钼等)引起基体金属点阵的畸变,加入能降低合金基体堆垛层错能的元素(如钴)和加入能减缓基体元素扩散速率的元素(钨、钼等),以强化基体。
⑵ 沉淀强化
通过时效处理,从过饱和固溶体中析出第二相(γ’、γ"、碳化物等),以强化合金。γ‘相与基体相同,均为面心立方结构,点阵常数与基体相近,并与晶体共格,因此γ相在基体中能呈细小颗粒状均匀析出,阻碍位错运动,而产生显著的强化作用。γ’相是A3B型金属间化合物,A代表镍、钴,B代表铝、钛、铌、钽、钒、钨,而铬、钼、铁既可为A又可为B。镍基合金中典型的γ‘相为Ni3(Al,Ti)。γ’相的强化效应可通过以下途径得到加强:
①增加γ‘相的数量;
②使γ’相与基体有适宜的错配度,以获得共格畸变的强化效应;
③加入铌、钽等元素增大γ’相的反相畴界能,以提高其抵抗位错切割的能力;
④加入钴、钨、钼等元素提高γ‘相的强度。γ"相为体心四方结构,其组成为Ni3Nb。因γ"相与基体的错配度较大,能引起较大程度的共格畸变,使合金获得很高的屈服强度。但超过700℃,强化效应便明显降低。钴基高温合金一般不含γ相,而用碳化物强化。
目前各种先进铸件制造技术和加工设备在不断开发和完善,如热控凝固、细晶工艺、激光成形修复技术、耐磨铸件铸造技术等,原有技术水平不断提高完善从而提高各种高温合金铸件产品的质量一致性和可靠性。
不含或少含铝、钛的高温合金,一般采用电弧炉或非真空感应炉冶炼。含铝、钛高的高温合金如在大气中熔炼时,元素烧损不易控制,气体和夹杂物进入较多,所以应采用真空冶炼。为了进一步降低夹杂物的含量,改善夹杂物的分布状态和铸锭的结晶组织,可采用冶炼和二次重熔相结合的双联工艺。冶炼的主要手段有电弧炉、真空感应炉和非真空感应炉;重熔的主要手段有真空自耗炉和电渣炉。
固溶强化型合金和含铝、钛低(铝和钛的总量约小于4.5%)的合金锭可采用锻造开坯;含铝、钛高的合金一般要采用挤压或轧制开坯,然后热轧成材,有些产品需进一步冷轧或冷拔。直径较大的合金锭或饼材需用水压机或快锻液压机锻造。
2、结晶冶金工艺
为了减少或铸造合金中垂直于应力轴的晶界和减少或疏松,近年来又发展出定向结晶工艺。这种工艺是在合金凝固过程中使晶粒沿一个结晶方向生长,以得到无横向晶界的平行柱状晶。实现定向结晶的首要工艺条件是在液相线和固相线之间建立并保持足够大的轴向温度梯度和良好的轴向散热条件。此外,为了全部晶界,还需研究单晶叶片的制造工艺。
3、粉末冶金工艺
粉末冶金工艺,主要用以生产沉淀强化型和氧化物弥散强化型高温合金。这种工艺可使一般不能变形的铸造高温合金获得可塑性甚至超塑性。
4、强度提高工艺
⑴固溶强化
加入与基体金属原子尺寸不同的元素(铬、钨、钼等)引起基体金属点阵的畸变,加入能降低合金基体堆垛层错能的元素(如钴)和加入能减缓基体元素扩散速率的元素(钨、钼等),以强化基体。
⑵ 沉淀强化
通过时效处理,从过饱和固溶体中析出第二相(γ’、γ"、碳化物等),以强化合金。γ‘相与基体相同,均为面心立方结构,点阵常数与基体相近,并与晶体共格,因此γ相在基体中能呈细小颗粒状均匀析出,阻碍位错运动,而产生显著的强化作用。γ’相是A3B型金属间化合物,A代表镍、钴,B代表铝、钛、铌、钽、钒、钨,而铬、钼、铁既可为A又可为B。镍基合金中典型的γ‘相为Ni3(Al,Ti)。γ’相的强化效应可通过以下途径得到加强:
①增加γ‘相的数量;
②使γ’相与基体有适宜的错配度,以获得共格畸变的强化效应;
③加入铌、钽等元素增大γ’相的反相畴界能,以提高其抵抗位错切割的能力;
④加入钴、钨、钼等元素提高γ‘相的强度。γ"相为体心四方结构,其组成为Ni3Nb。因γ"相与基体的错配度较大,能引起较大程度的共格畸变,使合金获得很高的屈服强度。但超过700℃,强化效应便明显降低。钴基高温合金一般不含γ相,而用碳化物强化。
GH98 Эп99 是一种高合金化、高热强性的弥散强化合金,使用温度高达1000℃,用于涡轮导向叶片,加力室材料。900℃以下有好的抗氧化性能、冷热疲劳性能及焊接性能。。。
GH99 эп693 高合金化的镍基时效合金,有较高的热强性,900℃以下可以长期使用,工作温度可达1000℃,合金的组织,具有满意的冷热加工成型和焊接工艺性能。
GH105 Nimonic105 可制造发动机的高温涡轮叶片,对振动、燃气腐蚀、应力扭曲、弯曲等复杂应力的耐受能力好。
GH128 合金具有高的塑性,较高的持久蠕变强度以及良好的抗氧化性和冲压、焊接性能。其综合性能优越,可在950℃以下长期使用。
GH141 Rene41 合金在650~900范围内,具有高的拉伸和持久蠕变强度和良好的抗氧化性能,
GH145 InconelX-750 合金在980℃以下具有良好的强度,良好的抗腐蚀和抗氧化性能,而且也有的低温性能,成型性能也好,主要用作和工业燃气轮机部件。
GH163 C263 合金在800℃以下使用时具有较高的屈服强度和蠕变强度,良好的冷热疲劳性能,应变时效裂纹倾向性小。合金的塑性及冷热加工成型性能、焊接性能好,在540~870温度范围内有极好的强度。用于发动机及燃气轮机的筒、安装边及其他承力部件。
GH182 Hastelloy 合金在650~1040温度范围内具有好的高温性,好的韧性和耐蚀性,其基本耐蚀性能与NS334相同
GH199 эп199 该合金具有较高的高温强度,优良的抗氧化性能和一定的可焊性能,可在950℃下长期使用。
GH202 эп202 合金具有较高的强度和塑性,满意的成型性能和焊接性能,以及良好的耐腐蚀抗氧化性能,合金在-253~850℃范围内组织性能,是深冷和高温条件使用的多用途合金。
GH220 эп220 高合金化、高性能的镍基难变形合金
GH99 эп693 高合金化的镍基时效合金,有较高的热强性,900℃以下可以长期使用,工作温度可达1000℃,合金的组织,具有满意的冷热加工成型和焊接工艺性能。
GH105 Nimonic105 可制造发动机的高温涡轮叶片,对振动、燃气腐蚀、应力扭曲、弯曲等复杂应力的耐受能力好。
GH128 合金具有高的塑性,较高的持久蠕变强度以及良好的抗氧化性和冲压、焊接性能。其综合性能优越,可在950℃以下长期使用。
GH141 Rene41 合金在650~900范围内,具有高的拉伸和持久蠕变强度和良好的抗氧化性能,
GH145 InconelX-750 合金在980℃以下具有良好的强度,良好的抗腐蚀和抗氧化性能,而且也有的低温性能,成型性能也好,主要用作和工业燃气轮机部件。
GH163 C263 合金在800℃以下使用时具有较高的屈服强度和蠕变强度,良好的冷热疲劳性能,应变时效裂纹倾向性小。合金的塑性及冷热加工成型性能、焊接性能好,在540~870温度范围内有极好的强度。用于发动机及燃气轮机的筒、安装边及其他承力部件。
GH182 Hastelloy 合金在650~1040温度范围内具有好的高温性,好的韧性和耐蚀性,其基本耐蚀性能与NS334相同
GH199 эп199 该合金具有较高的高温强度,优良的抗氧化性能和一定的可焊性能,可在950℃下长期使用。
GH202 эп202 合金具有较高的强度和塑性,满意的成型性能和焊接性能,以及良好的耐腐蚀抗氧化性能,合金在-253~850℃范围内组织性能,是深冷和高温条件使用的多用途合金。
GH220 эп220 高合金化、高性能的镍基难变形合金
(2)半奥氏体沉淀硬化不锈钢。碳含量一般在0.1%左右,为改进铸造性能铸造钢的碳含量大于0.1%;他点的控制是本钢设计的关键,这类钢在固溶处理后为奥氏体组织,在此状态下进行加工、成形、焊接。在调整处理(碳化物析出过程)后马氏体点升高,降到室温后为马氏体组织或再通过简单的低温处理(-72℃)后转变成马氏体(即马氏体点在-72℃以上);铬含量一般在14%以上,以保证良好的不锈性和耐蚀性;选择合适的铬、镍当量配比以降低钢中δ-铁素体的含量;钢中含有适量沉淀硬化元素。如钼、钛、铝、铌、铜等。有时钢中含钴,这一方面可以促进钼的强化作用,同时又不影响Ms点。
图1 0Cr17Ni7TiAl钢的热处理工艺
图2 0Cr17Ni4Cu4Nb钢的热处理工艺
(3)奥氏体沉淀硬化不锈钢。选择合适的铬、镍当量配比,使其形成非常稳定的奥氏体组织;为了弥补奥
半奥氏体沉淀硬化不锈钢热处理工艺
氏体强度的不足,通过加入铝、钛以形成Ni3Al、Ni3Ti,或加入磷形成M23(C+P)6而进行强化。
热处理工艺 (1)马氏体沉淀硬化不锈钢。以OCrl7NiTiAl(Stainless W)和OCrl7Ni4Cu4Nb为例,其热处理工艺如图1和图2所示。
(2)半奥氏体沉淀硬化不锈钢。以0Cr15Ni7Mo2Al为例
(3)奥氏体沉淀硬化不锈钢。以0Cr15Ni25Ti2MoAlVB为例其热处理工艺
图1 0Cr17Ni7TiAl钢的热处理工艺
图2 0Cr17Ni4Cu4Nb钢的热处理工艺
(3)奥氏体沉淀硬化不锈钢。选择合适的铬、镍当量配比,使其形成非常稳定的奥氏体组织;为了弥补奥
半奥氏体沉淀硬化不锈钢热处理工艺
氏体强度的不足,通过加入铝、钛以形成Ni3Al、Ni3Ti,或加入磷形成M23(C+P)6而进行强化。
热处理工艺 (1)马氏体沉淀硬化不锈钢。以OCrl7NiTiAl(Stainless W)和OCrl7Ni4Cu4Nb为例,其热处理工艺如图1和图2所示。
(2)半奥氏体沉淀硬化不锈钢。以0Cr15Ni7Mo2Al为例
(3)奥氏体沉淀硬化不锈钢。以0Cr15Ni25Ti2MoAlVB为例其热处理工艺
秉争实业(忻州市分公司)是集研发、生产、销售、服务为一体的企业,拥有先进的 精密合金技术优势、员工队伍以及完善的售后服务体系。公司生产的 精密合金遍布全国各地,以其品质赢得广大客户的信赖和好评。 在新的形势下,秉争实业(忻州市分公司)始终秉承“质量、用户、信誉”的经营宗旨,坚持“科技兴厂、以人为本”的战略方针,在注重实践与探索的同时,不断追求 精密合金产品创新、服务创新,致力于为海内外客户提供的产品和的服务。